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Abstract  
Entropy maximization has proven effective in treating cer- 
tain aspects of the phase problem of X-ray diffraction. 
Much of its development has been expressed in proba- 
bilistic language, although image enhancement has been 
somewhat more physical or geometric in description. Here 
phasing and entropy maximization are embedded in the 
quantum mechanical problem of reconstructing an elec- 
tronic one-matrix under experimental constraints. Entropy 
on an N-representable one-particle density matrix is well 
defined. The entropy is the expected form, and it is a 
simple function of the one-matrix eigenvalues which all 
must be non-negative. Certain other properties are perti- 
nent to phasing which is implicit in one-matrix reconstruc- 
tion governed by entropy maximization. Throughout this 
work reference is made to informational entropy, not the 
entropy of thermodynamics. 

1. Introduct ion  

Electron density is the outcome of solving an X-ray crys- 
tallographic phase problem. While structure-factor phases 
are commonly viewed as the desired result of phasing cal- 
culations, they have no substantive use other than in gener- 
ation of a charge density through Fourier synthesis. This 
is especially evident in macromolecular crystallography 
where the penultimate step in solution of a phase problem 
is expert judgment that the derived density function is in- 
deed that of, say, a protein, and the implicit final judgment 
is that an acceptable structure model has been developed. 

Electronic charge density is also a property calculated 
in quantum mechanical studies of chemical systems, and 
it plays a central role in their discussion. This central- 
ity of charge density was given formal standing by the 
Hohenberg-Kohn theorem (HKT hereafter) (1964). An in- 
formal summary of HKT is that charge density alone suf- 
rices to fully delimit the ground state of a non-degenerate 
electronic system. Clearly, such idealization is completely 
out of the range of experimental protein crystallography. 
Nevertheless, expressing the phase problem in quantum 
mechanically informed constructions may uncover or at 
least open the way to additional power for its solution. 

The phase problem is expressed here, not in probabilis- 
tic language, but as a physics problem of diffraction and 
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quantum theory, which is to be solved by resolution of 
available data and constraints arising from the problem's 
physical nature. Density matrices will be the principal tool 
for this, and their computation and manipulation will be 
governed by constrained entropy maximization. This en- 
tropy, in spite of the physics context, is not the entropy 
of thermodynamics, but informational entropy (Skilling, 
1988). Physical character is brought to the problem not 
by entropy, which here serves only as an objective func- 
tion for optimization, but by the density-matrix structure 
that quantum mechanics requires. 

2. Density matrices 

The connection between quantum mechanics and crystal- 
lography centers on charge density. Its representation in a 
density-matrix formalism is particularly useful because of 
the consequent analytic relationships between direct and 
reciprocal space. An excellent discussion of these relation- 
ships and the construction of density matrices has been 
given recently by Schmider, Smith & Weyrich (1992). 

Given a wavefunction q for a non-degenerate electronic 
ground state of N particles, the density matrix closest to 
~I, is 

F ( x , y , x ' , y ' ) -  ~I,(x, y)~I,*(x', y ') ,  (1) 

a dyadic product (Davidson, 1976) in which, for conve- 
nience, the coordinates are partitioned such that x col- 
lects the four space-spin coordinates of electron one, and 
y collects the coordinates of the other N - 1  electrons. 
A reduced density matrix is found by contraction of 1-' 
through averaging over the coordinates not of interest. 
Of particular interest here is the reduced one-matrix for 
which common notations are 7(1,1'), where the number 1 
stands for the four space-spin coordinates of electron one, 
or pl(x, xt), and, inter alia, Pl (X, X t) may be regarded as 
the kernel of an integral operator pl (McWeeny & Sut- 
cliffe, 1969). The eight-dimensional one-matrix in terms 
of q, is 

pl(x, x') = X / ~I,(x,y)q*(x', y) dy, (2) 

a continuous function of the two four-dimensional vectors 
x and x', and the corresponding spin-free or spin-traced 
density matrix is p(r, r'). The density matrix is hermitian, 
and it is termed a one-matrix in recognition that the surviv- 
ing coordinates are for any one electron of the N-electron 
ensemble. 
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One-particle density matrices carry sufficient informa- 
tion for all one-electron properties (McWeeny & Sutcliffe, 
1969). Charge density, although clearly dependent on the 
disposition of all electrons in a multiparticle system, is a 
(spin-free) one-electron property. It is the probability den- 
sity of finding, in the presence of the other electrons, any 
one of the N electrons at r, and it is given by the so- 
called diagonal of p(r, r ') ,  that portion for which r = r ' ,  
and p(r, r) is written as p(r), which is the ordinary crys- 
tallographic electron density at r. 

It is useful to expand the one-matrix in an orthogonal 
basis. In terms of an arbitrary set of basis functions q0,, 

p ( r , r ' ) -  Z Pik ~ i ( r ) ~ ( r ' ) ,  (3) 
ik 

and the square array P is its number representation. The 
(spin-free) one-matrix is most compactly expressed in the 
eigenvalue equation 

(x) 

p(r,r') = ~ nj xj(r)x;(r '), (4) 
j=l 

in which an eigenvalue nj is the occupation number 
of (spin-free) natural orbital Xj. Natural orbitals are the 
eigenfunctions of the one-matrix, and the ordinary elec- 
tron density may be written 

oo 

p(r) = Z nj Ixj(r)l 2. (5) 
j=l  

One requirement for a density-matrix representation of 
a fermion system is that it be N-representable. This ex- 
presses the necessity that a density matrix be deriv- 
able from an N-particle dyadic product as in (2). For a 
(fermion) one-matrix to be N-representable it suffices that 
its eigenvalues sum to N and lie in the range [0, 1 ] (Cole- 
man, 1963). In the approximation of electrons as indepen- 
dent particles, the eigenvalues are all either 0 or 1 and the 
one-matrix is idempotent. For a spin-traced one-matrix, it 
may be necessary to consider the eigenvalue range [0, 2] 
to allow for double occupancy of orbitals; the eigenvalues 
must always sum to N. 

Useful approximations for many quantum mechanical 
problems are based on the assumption of independent 
or non-interacting particles. Systems of independent elec- 
trons are described by idempotent density matrices and 
represent the Hartree-Fock or self-consistent field limit of 
quantum mechanical calculation. While even this approx- 
imation is well out of reach of protein crystallography for 
the foreseeable future, its feature of matrix idempotence 
has great practical importance. 

Idempotent matrices have eigenvalues which are 0 or 
l, and can be characterized by the matrix equation P = 
P P .  If the product of two integral operators with kernels 
A(x ,x ' ) ,  B(x ,x ' ) ,  is the integral operator with kernel 
C(x,x'), 

C(x ,x ' )  = f A ( x , x " ) B ( x " , x ' ) d x " ,  (6) 
J 

then the associated matrices satisfy C = AB,  and if the 
one-electron operator Pl has the property Pl = p2, it is a 
projection operator and its matrix representation is idem- 
potent. The corresponding eigenvalue equation becomes 

N 

p ( r , r ' )  = ~ x j ( r ) x ; ( r ' ) ,  
j=l  

(7) 

and although the general expansion of (3) is not simplified, 
its number representation P must possess the properties 
of idempotence. This points directly to the computational 
practicality of dealing with density matrices, namely that 
they can be manipulated through their number representa- 
tions apart from realization in an appropriate orthogonal 
basis. 

3. Entropy on a density matrix 
Jaynes (1957) gave entropy on a density matrix in the form 

S = - t r [p ( r ,  r ')  In p(r, r')], (8) 

the negative trace, which may be computed as 

oo 

S = - ~ nj In (9) n j, 
j=l  

where the eigenvalues nj are those of (4). It is clear that 
entropy on an N-representable fermion density matrix is 
well defined and can be calculated. 

A density matrix can be constructed from structure 
factors by rearrangement of 

1 
p(r) = V ~ F ( h i ) e x p [ - 2 ~ ' i h i .  r], (10) 

i 

the Fourier synthesis of charge density. For a crystal unit 
cell of volume V, define 

Tik ~Th,-h~;  ~ i ( r ) - -  V-1 /2exp{-2~-h , . r } .  (11) 

Then if by any assignment 

Fh = gC(h, T) ---- ~ T,k, (12) 
h , - h k = h  

p(r , r ' )  = Z Tik ~ i ( r ) ~ ( r ' )  (13) 
ik 

is a full density matrix carrying the charge density as its 
diagonal. Because the elements Tij are restricted only to 
satisfy (12), (13) cannot be expected to give the true den- 
sity matrix. One additional completely general constraint 
may be imposed on any real electronic system; its one- 
matrix must be positive semidefinite, and assignment of 
values for T must give a matrix with non-negative eigen- 
values. The other general constraint has already been sat- 
isfied by (12) by the fact that F0 is, on an absolute scale, 
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the number of electrons in a unit cell, and the one-matrix 
eigenvalues must therefore sum to N. 

Under these conditions entropy is well defined, both on 
the density matrix and its diagonal, the ordinary charge 
density, so long as it also is non-negative. Another well 
defined and useful functional is 

Q = ~ - ~ ( n j - n } ) ,  (14) 
j=l  

which has strong parallels with entropy. Some of the 
parallels are (negative eigenvalues disallowed): 

(1) Q and S are both zero for idempotent matrices. 
(2) Q and S are both increased by any pairwise change 

2 In the case which preserves ~-'~j nj and diminishes )-~ nj. 
that the Q and S regularization formulas are applied to 
an ordinary non-negative density function of fixed mean 
value, the flatter the density, the greater both Q and S 
(Collins & Prince, 1991). 

(3) Q and S both have a maximum for a fixed number 
of positive eigenvalues when the positive eigenvalues are 
all equal, and any others are zero. 

In the sense of these parallels, Q and S are equivalent 
measures for flatness of a density map or an eigenvalue 
spectrmn. No significance is ascribed to Q beyond its role 
as a convenient computational surrogate for S. 

It should be noted that T is not a Karle-Hauptman 
matrix (Karle & Hauptman, 1950). In such a matrix each 
different entry with a subscript pair following the pattern 
i ,  k ==~ hi  - hk = h has the same value, namely Fh. In 
T, as given by (12), all different entries associated with h 
are required only to sum to Fh; they are not required to 
have the same value and they are expected to be unequal. 
For its initial construction, given a phase set assignment, 
one practical choice of first values for the elements Tik, 
and the one used in test calculations, is Fh divided by the 
number of its occurrences in T. 

4. Entropy maximization 

Macromolecular crystallography generally involves unit 
cells containing at least tens of thousands of electrons. 
For these cases computationally tractable number repre- 
sentations of density matrices are not likely to have a 
rank as large as N in T. Of course if the rank of T is 
smaller than the number of electrons in a unit cell, the 
eigenvalues of T, which must sum to N, will violate their 
N-representability upper bound, and (13) can never be bet- 
ter than an approximation to a true fermion density matrix. 
Nevertheless, if value assignments in T are governed by 
maximization of the entropic regularization formula for S, 
and are constrained by I~'(h, T)I = IFhl, the approximate 
density-matrix diagonal will suffer only the usual imper- 
fections of data limitation for the given phase assignment, 
and the eigenvalues of T will be as nearly equal as possi- 
ble. In the following discussion it is assumed that the rank 
of T is significantly less than N. 

One way to maximize entropy on T is to adjust the per- 
missible assignment of values to Tik so that T = n T T ,  

where ~; is a positive constant; in such a case T will be 
termed idempotent within a scale factor, or just idempo- 
tent if the need for scaling is clear. The eigenvalues for 
idempotent T are all zero or ~-1, and the regularizations 
S and Q are a maximum. In application it is not antici- 
pated that T can be made idempotent within a scale factor, 
under the conditions of (12), if its rank is less than N. In 
any case, when constrained Q is made a maximum by 
adjustment of Tik, the similarly constrained entropy S is 
moved toward its maximum in the sense that Q provides 
a lower bound to S (Harrison, 1987). 

To verify that maximizing entropy on T could be use- 
ful in dealing with the phase problem, the lower bound 
maximization of Q was undertaken with real data for 
bovine pancreatic phospholipase A2 (Dijkstra, Kalk, Hol 
& Drenth, 1981). In these preliminary tests the phospho- 
lipase was treated as though its space group were P1. An 
initial matrix T was constructed as described at the end 
of the previous section, and driven toward idempotence in 
a minimization of 

[Ti~- Zik[ 2 + ~ [~(h,  T ) -  Fh[ 2 
i,k h 

(15) 

by a truncated-Newton method (Nash, 1985); T ~q = T T .  
In the largest trial 24 reflections of lowest sin 0/A were 
used for Fh,, thus the rank of T was 24, corresponding 
to its complex entries the number of real variables in the 
optimization was 576, and the number of phases returned 
was about 100. Several trials were run for ranks rang- 
ing between 15 and 24. On average, about 67% of the 
returned phases were within 10 ° of the correct values, 
about 5% were in error by more than 45 ° , and the aver- 
age phase error was about 34 ° . In each case the gradient 
vector magnitude was reduced by nine or more orders of 
magnitude as the minimization progressed. Clearly, these 
tests provide no positive information about the phasing 
power of entropy maximization on density matrices. Be- 
cause they were initiated with the correct phases, and the 
minimizations required minimal departure from them, the 
tests provide only the non-negative result that raising the 
lower bound of entropy on a density matrix in a con- 
strained maximization of Q can be carded out without 
destroying proposed correct phase information. 

As efficient algorithms for these calculations are con- 
structed, the rank of T can be increased substantially. In 
the limit of rank ~ N, the number of electrons in a unit 
cell, it is known that a physical density is representable 
by a system of non-interacting particles (Kohn, 1985), 
and consequently by an idempotent density matrix. Ev- 
idently as the rank of T increases, the lower bound on 
S established by maximum Q becomes tighter until at 
idempotence, as pointed out earlier, Q and S simultane- 
ously achieve their respective maxima. On ordinary elec- 
tron density, or a density-matrix diagonal, Q < S and Q 
is maximized when I p ( r ) -  p2(r)[ is minimized (Harrison, 
1987); Q = S when the density function is absolutely 
flat. On a full density matrix, in contrast, Q = S however 
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highly structured the ordinary density may be, if in an op- 
erator equation p = p2 and the one-matrix is idempotent. 

Equation (9), which is the entropy formula in terms 
of eigenvalues, shows that entropy maximization is most 
directly achievable through control of the eigenvalues of 
p(r , r ' ) .  Because the one-matrix is hermitian, T can be 
resolved as 

T = CNC*,  (16) 

where C is the unitary eigenvector matrix of T, and N 
is the diagonal matrix of eigenvalues. Schmider, Smith 
& Weyrich (1992) propose building C from a series of 
Jacobi rotations and reconstructing T in an optimization 
parameterized by the rotations czi and the eigenvalues nj. 
Of course, in this work the optimization would be en- 
tropy maximization, experimental constraints would in- 
clude I~'(h, T)I = IFhl, and successful reconstruction of 
T under these conditions would constitute a complete so- 
lution to the phase problem. 

5. Concluding remarks 

In the past decade, entropy maximization has proven to be 
a powerful tool in dealing with various aspects of the crys- 
tallographic phase problem. Although use of informational 
entropy has been developed from many points of view, its 
most common expression has been in probabilistic terms. 
Here a new approach has expressed entropy maximization 
and phasing in the physical context of molecular quan- 
tum chemistry. Indeed, in the spirit of HKT, one might 
say that phasing by entropy maximization on a one-matrix 
is equivalent to using structure-factor moduli to establish 
the full ground state of an isolated system of interacting 
electrons (Levy & Perdew, 1985). Of course HKT is at 
present only an existence theorem, and a current area of 
research is formation of the true off-diagonal portion of 
a one-matrix when the diagonal portion is known. En- 
tropy maximization on a one-matrix provides a formal- 

ism for connecting its diagonal and off-diagonal portions 
and presents the phase problem as a physical problem of 
quantum mechanics. 

Solution of the phase problem by entropy maximiza- 
tion on a one-matrix ensures quantum mechanical cor- 
rectness of the relationship between structure moduli and 
the charge density implied by phase determination. More- 
over, the density-matrix formalism allows for straightfor- 
ward inclusion in the phasing process of other kinds of 
information, e.g. momentum density constraints whether 
from theoretical considerations or inelastic scattering ex- 
periments (Schmider, Smith & Weyrich, 1992). Because 
density matrices are routinely reducible to eigen represen- 
tations, demonstrable optimality is expected among related 
algorithms for dealing with the phase problem. 
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